STELLAR AGE DETERMINATIONS IN TARGET SELECTION STRATEGY

FOR THE SETI MICROWAVE OBSERVING PROJECT

Final report to the Space Telescope Science Institute

by

Sallie L. Baliunas
Astrophysicist
Smithsonian Astrophysical Observatory
60 Garden Street
Cambridge MA 02138

(617) 495-7415

AGE DETERMINATION OF CANDIDATE SOLAR-TYPE DWARFS

The ages of candidate stars for the SETI search are critical to ensure that stars of sufficient age – that is, approximately solar age – are selected. We report results of initial observations of and analysis from a 3-year observing program that sought to determine the ages of a subset of stars determined from the larger sample to be single stars close to the sun in spectral type (F9 V to K0 V). The results from are being prepared for publication.

Ages of single, solar-type stars in the field can be efficiently determined from a measurement of the relative strength of the Ca II H and K emission lines. Moreover, the strength of chromospheric emission lines such as the H and K lines is the most precise and unambiguous measurement of main-sequence age. Other determinations of stellar ages, for example, from lithium abundance, *vsini* or kinematics involve difficult measurements, interpretation or analysis, resulting in ambiguity of the determination of age. The H and K emission strengths are straightforward to measure and interpret and can yield a high degree of accuracy in inferred ages (Soderblom et al. 1991, *Ap.J.*, 375, 722) and can yield results for a large sample of stars in a short amount of time.

In the initial phase of the observing program, we constructed the function that best characterizes age as a function of stellar magnetic activity, as indicated by the relative flux in the Ca II H and K emission cores. The observations were from two sources: either stars previously observed at Mount Wilson or independent measurements that could be transformed to the Mount Wilson index of chromospheric activity. This yielded a good, initial function that could be used to determine ages based on measurement of the relative H and K flux. The newly-determined function of lower main sequence age as a function of chromospheric emission flux is different from that of Soderblom et al (1991) for young stars. However, for the purposes of finding old stars, the difference in the two functions is inconsequential.

Next we observed 102 lower main sequence stars (Table 1 and Figure 1) at a sampling frequency of a few measurements per observing season. Young stars (ages less than 1 - 2 gigayr) were easily distinguished from old stars in our extended sample on the basis of the initial, averaged measurement. the histogram of ages in the program stars are shown in Figure 2. Note the apparently extraordinarily old star, at an age of 18.5 Gigayr. The observation is secure; follow-up work is being done to investigate the cause of the result of the great age implied.

The second phase of the program focused on the stars with relatively weak H and K chromospheric emission, i.e., the stars with ages of several billion years or so. Subsequent to the determination of an approximate age in the sample, intensive

measurements were made on a schedule of several times per week in a subset of 50 stars from the new sample that proved to be close in mass and age to the sun. These frequent measurements were made in order to assess variability on short time scales due to rotation modulation and the growth and decay of active regions, as well as to determine rotation. Rotation modulation may add as much as 10 to 15 per cent scatter to the instantaneous or undersampled relative flux, and would be a source of uncertainty in determining ages.

Since rotation decreases with increasing main sequence age, the determination of rotation periods could serve as an independent check of the age determined from the average chromospheric emission strength. The rotation period may be the most accurate way of determining ages, because, as we have discovered, stars close in mass and age to the sun undergo activity cycle variations on time scales of a decade, and even larger-amplitude variations on time scales of centuries. An example of the latter variations is the Sun during the Maunder Minimum of the 17th century, when activity dropped to very low levels, much lower that at the minimum phase between sunspot cycles. An instantaneous flux measurement would yield an age with large uncertainty, depending on the phase of long-term variations. In addition, direct observation of the rotation period eliminates the ambiguity arising from measurement of the Doppler broadening in spectral lines, because the Doppler broadening indicates the projected rotational velocity, vsini.

Table 1 lists the results of the stellar observing program. Column 1 lists the mean S-value, Col. 2 is the rms of the mean S, Col. 3 is the number of observations, Col. 4 is the number of nights the star was observed, Col. 5 is R'_{HK} , in units of 10^5 , Col. 6 is log of the convective turnover time, τ , and Col. 7 is the HD number of the star.

Further analysis revealed the existence of uncertainty in the determination of ages of stars close in mass and age to the sun. As described above, the long-term variability of sun-like stars leads to a substantial uncertainty in age determination when the phase of long-term variability is unknown. In the case of the Sun, five different phases of long-term activity serve to show the uncertainty in the age determination. The fluxes at sunspot minimum, maximum and between them yield ages within one gigayr. The sun spends approximately two-thirds of its time in cyclic state, so this is an accurate range of uncertainty in age determination for two out of three stars if the phase of the sunspot cycle is not known. However, for roughly one-third of the time, the sun's magnetic activity rises to extraordinarily high or low states of magnetic activity, yielding an age that is as young as 3 gigayr or as old as 8 gigayr. Thus, the age determination carries with it an uncertainty that can be characterized by a probability distribution depending on the amount of time the star spends at each phase. That information is best known for the sun, and mostly unknown for individual stars.

Figure 3 shows the chromospheric activity of all the stars in the Mount Wilson data base, including the stars observed for this program. The five states of solar activity are indicated by the large dots connected by the vertical line.

An additional, independent estimate of the uncertainty in age due to long-term phases of chromospheric variation is being made by comparing the ages obtained from components of widely-separated binaries, which are assumed to be coeval. Perfect agreement in the age determination for a binary would be revealed by the same age; many of the pairs of components of binary stars show significantly different ages, indicating long-term variability that is undersampled in our brief measurements of fluxes.

A third way to estimate the uncertainty of the age determination is to observe the instantaneous spread in a substantial sample of coeval stars. We (along with R. Gilliland, Space Telescope Science Institute) observed the early G-type stars in the old, open cluster, M67. We used the 4-meter telescope at Kitt Peak National Observatory, and the Hydra fiber feed and echelle to record the spectra of about 200 stars in M67 with the same spectral coverage as the Mount Wilson instrument. The data are currently being reduced.

Figure Captions

- Figure 1 Average chromospheric magnetic activity as a function of (B-V)color index in the sample of possible SETI target stars observed in this program. For
 comparison, the Sun is indicated by the large, open circle.
- Figure 2 Histogram of ages of stars in the possible SETI sample from Figure 1. The binsize is 500 million years.
- Figure 3- Average chromospheric magnetic activity vs. mass for the entire sample of stars in the Mount Wilson data base. The sun at five different phases of long-term magnetic activity is denoted by the five dots connected with a vertical line.

Table 1. Results from Possible Candidate SETI Targets

$\langle S \rangle rm.$	s N_{ab}	. N	abta R ⁱ zzze	$x10^5~log au$	HDNumber
					11 D 11 amoet
0.2043 0.031 0.2721 0.042					· - ·
0.1527 0.023				9.1445	-
0.1516 0.023				9.7911 9.8717	
0.3542 0.060	1 259			8.7341	1461 1835
0.2257 0.093	3 45			9.4078	
0.1549 0.024	3 93		0.8345	9.8659	3795
0.1459 0.022			0.8237	9.8659 9.8742 9.7355	4307
0.1675 0.025			1.0177	9.7355	6582
0.1982 0.030 0.1365 0.021	7 135	45	1.6523	9.4006	6920
0.1482 0.023	1 435 1 39	143		10.0053	
0.1488 0.022		13 27		9.9190	10145
0.1706 0.026	207		0.0023	9.8448	10307
0.1477 0.0229	9 61	21	0.3022	9.7594 9.9639	10700
0.1486 0.0229	228	77	0.8596	9.8470	10697 12235
0.1467 0.0227	7 96	33	0.8302	9.8692	13043
0.4087 0.0632			4.9709		16397
0.1406 0.0216	54	18	0.7449	9.9364	19373
0.3358 0.0532	233	85	3.2893	8.8991	20630
0.3829 0.0594	222	74	3.7138	8.7312	26913
0.2853 0.0442 0.3068 0.0478		73	3.0623		
0.1680 0.0592	116	40	3.2308	8.9187	
0.1516 0.0241		22 24	1.1559	9.6482	
0.1443 0.0227		17	0.9178 0.7940	9.8044	33093
0.3306 0.0540		103	3.7867		34411
0.1505 0.0236	91	31		9.8503	39587 39881
0.1449 0.0226		18	0.8124	9.8829	41330
0.1531 0.0236		77		9.7919	
0.1509 0.0237		22	0.9344	9.7926	48682
0.1571 0.0244			1.0219	9.7327	50692
0.1586 0.0247 0.1532 0.0237	111	37	1.0295		52711
0.1647 0.0257	81 123	27	0.9589	9.7754	55575
0.1672 0.0259	66	41 22	1.1243		64096
0.1728 0.0267	105	35	1.1095	9.7702 9.6765	65583
0.1683 0.0262	129		0.8459	9.8573	68017 69830
0.1360 0.0210	126	42	0.6720	9.9972	70110
0.1549 0.0240	72	24	0.9481	9.7830	71148
0.3595 0.0564	85	28	4.0830	8.5352	72905
0.2345 0.0369	189	63	1.9801	9.2799	76151
0.2514 0.0403 0.2421 0.0566	327	109	2.4912	9.1299	78366
0.1736 0.0272	87 273	31 90	1.7734	9.3529	79096
0.1363 0.0212	79	27	1.2088	9.6171	81809
0.1445 0.0224	96	32	0.6708 0.7565	9.9982 9.9270	84737
0.1657 0.0260	69	25	1.1409	9.6572	86728
0.1555 0.0240	87		0.9800	9.7609	88725 90508
0.1463 0.0225	90		0.8290	9.8701	95128
0.3285 0.0511	243	81	3.6587	8.7560	97334
0.3134 0.0552	414		2.6739		101501
0.1853 0.0293 0.1590 0.0244	177		1.0554	9.7108	103095
0.1582 0.0245	93 126		1.0429		109358
0.1899 0.0297	126 471		0.9330		114174
1	4/I	100	1.5681	9.4364	114710

```
0.3264 0.0524
                144
                          3.6740 8.7492 115043
                      48
 0.3312 0.0618
                183
                      60
                          3.8411
                                  8.6698
                                          115383
 0.1621 0.0252
                162
                          0.9041 9.8143
                      54
                                          115617
 0.1414 0.0222
                 73
                      24
                          0.6506 10.0157
                                          117176
 0.1371 0.0211
                129
                      43
                          0.6813 9.9892
                                          120066
 0.1713 0.0265
                      23 0.9352 9.7920
                 69
                                          122742
 0.1479 0.0230
                131
                      46 0.8603 9.8465
                                          124553
 0.1687 0.0261
                150
                      50
                          1.1557 9.6483
                                          126053
 0.5779 0.0928
                297
                     100 7.5304 (1.5536) 129333
 0.4827 0.0970
                     i83 4.0523 8.5537 131156A
                552
 0.1606 0.0249
                                  9.7077 141004
                307
                     104
                         1.0601
 0.1711 0.0266
                 63
                      21
                                  9.6013 142267
                          1.2367
 0.1495 0.0232
                708
                     229
                         0.8858 9.8276 143761
 0.1686 0.0264
                 75
                      25
                         0.9327
                                  9.7938 144579
 0.1806 0.0337
                  3
                       1
                         1.0054 9.7436 145958A
 0.1826 0.0345
                  3
                       1
                         1.0259
                                  9.7300 145958B
0.1831 0.0313
               147
                      49
                          1.3247
                                  9.5533
                                         146233
 0.4242 0.0716
                512
                     170
                          3.4561
                                  8.8390
                                         152391
 0.1853 0.0311
                 63
                      21
                          1.1237
                                  9.6677
                                         154345
 0.1563 0.0245
                159
                      53
                         0.9772
                                 9.7628
                                         157214
 0.1627 0.0252
                165
                      54
                         0.8893
                                         158614
                                 9.8250
0.1765 0.0278
                         1.2513
                150
                      50
                                 9.5931
                                          159222
0.1348 0.0211
                         0.6291 10.0345
                249
                      83
                                         161239
0.4822 0.0748
               120
                      40
                         5.8679 (6.4160) 165401
0.1532 0.0240
                150
                      50
                         0.8950
                                  9.8208
                                         168009
0.1794 0.0279
                291
                      99
                         1.3702
                                 9.5298
                                         176051
0.1804 0.0285
                153
                      51
                         1.3988
                                 9.5154
                                         176377
0.1525 0.0239
               276
                      96
                         0.8042
                                 9.8892
                                         178428
0.1486 0.0230
               132
                      46
                         0.7713
                                 9.9151
                                          179957
0.1515 0.0235
               132
                      44
                         0.8697
                                 9.8395
                                          179958
0.1659 0.0269
               153
                         1.0184 9.7350
                      51
                                          181655
0.1399 0.0221
                 69
                      23 0.6186 10.0438
                                          183650
0.1494 0.0231
                 54
                         0.8524
                      18
                                 9.8524
                                          186408
0.1474 0.0228
                 54
                      18
                         0.7972
                                 9.8947
                                          186427
0.1892 0.0299
                90
                         1.5413
                      30
                                 9.4482
                                         189340
0.1472 0.0232
               243
                     81
                         0.6873
                                 9.9841
                                         190360
0.1886 0.0294
               360
                    122
                         1.4863
                                 9.4733
                                         190406
0.1618 0.0249
                81
                     27
                         1.0981
                                 9.6836
                                         193664
0.1420 0.0223
                36
                     12
                         0.6862
                                 9.9851
                                         195564
0.1560 0.0245
               123
                     41
                         0.9800
                                 9.7609
                                         196850
0.1900 0.0441
               127
                         1.4507
                                 9.4901
                     45
                                         197076
0.1463 0.0228
                90
                         0.8194
                     30
                                 9.8775
                                         199960
0.1570 0.0653
                42
                     10
                         0.3840 10.2700
                                         202573
0.3305 0.0511
               447
                    151
                         3.7857
                                 8.6972
                                         206860
0.1510 0.0236
                63
                     21
                         0.7116
                                 9.9638
                                         210277
0.1470 0.0226
               212
                     73
                         0.7784
                                 9.9095
                                         217014
```


20

Ν

Figure 2

			•
		::	